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SUMMARY 

Transfer matrices and stiffness 
state vibration at an arbitrary 

matrices are developed for uniform beams in  a steady 
frequency. Assumptions of smal I bending deflection 

theory are used. Effects of shear deformation, rotary inertia, and cross-sectional 
warping are neglected. 

In this report, the following matrices are presented: 

Beam transfer 
Beam transfer 
Beam transfer 
Beam transfer 

and stiffness matrices without intermediate loads; 
and stiffness matrices for intermediate concentrated force and couple; 
matrix for several intermediate concentrated forces and moments; and 
matrix for continuous applied force and moment distribution 
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1 .O INTRODUCTION 

In the following analysis, transfer matrices and stiffness matrices are developed for 
uniform beams in a state of steady vibration at an arbitrary frequency w .  The usual 
assumption of small bending deflection theory i s  used and a l l  effects of shear defonn- 
ation, rotary inertia and cross-section warping are neglected. 

The first transfer matrices to be developed relate the oscillatory deflection, slope, 
bending moment and shear at the one end of the beam to the oscillatory deflection, 
slope, bending moment and shear at the other end of the beam. From these transfer 
matrices, it i s  possible to solve for the dynamic stiffness matrix of the beam which 
relates the bending moment and shear loads at the two ends of the beam to the deflections 
and slopes at the two ends. 

Transfer matrices are then developed for a uniform beam with an oscillatory concentrated 
force and couple acting at an arbitrary point along the span. A dynamic stiffness matrix 
i s  also obtained for this case which relates the bending moments and shears at the two 
ends of the beam, and relates the applied force and couple, to the deflections and 
s lopes  at the two ends of the beam and at the point of application of the force and couple. 
It i s  then shown how these transfer and stiffness matrices can be generalized to account 
for an arbitrary number of forces and couples applied at arbitrary discrete points along 
the span. 

Finally, transfer matrices are developed for the case in which a continuous distribution of 
forces and couples are applied along the span of the beam. This case i s  an obvious 
generalization of the case of a number of concentrated forces and couples applied at 
discrete spanwise locations. 

1.1 Beam Transfer Matrix Without Intermediate Applied Loads 

A free-body diagram of a uniform beam i s  shown in Figure 1 below along with the positive 
directions chosen for the end deflections, slopes, bending moments and shears. The symbols 

0 

- x  
G 

Figure 1: Free-body Diagram of Uniform Beam With End Loads. 
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chosen for the end deflections and loads are 

w(O), w(L) = end deflections 

e(O) ,  8(L) = end slopes 

M(O), M(L) = end bending moments 

V(O), V(L) = end shears 

The equation of motion for a uniform beam i s  

where 

W(x,t) = beam bending deflection 

p = beam mass per unit length 

E i = beam benciing siiiiness 

For harmonic motion at frequency w, the bending deflection can be expressed 
in the complex form 

iwt 
W(x,t) = w(x) e 

Upon substituting (2) into ( l ) ,  the following ordinary differential equation for 
the spanwise deflection amplitude, w(x), i s  obtained 

a 4  4 
w(x) = \L' w(x) . 4  (3) 

d x  

where the nondimensional frequency parameter a and the response frequency w are 
related by the equation 
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The general solution of (3) can be set down immediately, and has the form 

w(x) = A cosh {+ B sinh c + C cos c + D sin c (5) 

where 

A,B,C,D = deflection coefficients to be determined from 
the boundary conditions on the beam. 

In terms of the deflection w(x), the slope e(x), bending moment M(x), and shear 
V(x) are defined as 

0(x) = d w(x)/dx 

M(x) = E I d2 w(x)/dx2 (4 
3 3 

V(x) = E I d w(x)/dx 

In terms of the deflection coefficients A,B,C,D and the non-dimensional frequency 
parameter a , the &rleci;on, slope, Zcndiiig iiicxient =zd :he=: =t tho ond x = 0 nre -1 

w(0) = A +  C 

L0(0) = a (B +-D) 

( L ~ / E  I) M(O) = a *  (A-C) 

3 3 - (L /E I) V(0) = a (B - D) 

The simultaneous solution of (7) for A,B,C,D gives 
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1 
2 

a 
E l  w(0) - - c = -  

2 

A 

B 

C 

‘ D  

1 L ~ V ( O ~  

E l  1 D = l&- Le(0) + 3 
a 2 a  

1 T1 = 2 

which in matrix form becomes 

1 1 
3 0 - 0  a a 

1 0 -- 0 2 
a 

-- 

1 

= T1 

where the 4 x 4 matrix T 1  i s  

n 1 

a 

- 
2 8 

1 
3 

a 

- 1 0 - 0  
a 

(9) 

The deflection, slope, bending moment and shear at the end x = L,  where c = a , can 
be obtained from (5) and (6); and the results can be written in matrix form as follows: 

A 

B 

C 

D 

= T2 
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where the 4 x 4 matrix T, i s  

- 
T2 - 

I 

cosh a sinh a cos a sin a 

a sinh a a cosh a - a sin a a cos a 

a cosh a a sinh a - a cos a - a sin a 

-a cos a a sinh a a cosh a a sin a 

2 2 2 2 

3 3 3 3 

The beam transfer matrix between the deflections and loads at x = 0 and the deflections 
and loads at x = L can be obtained by combining (8) and (10) to give 

- 
= T(0,L) 

where the transfer matrix T(0,L) i s  given by the equation 

(13) - 
T(0,L) = T2 T1 

Multiplying, according to (13), the matrices T1 and T2 as given by (9) and (1 1) 
results in the following matrix for T(0,L): 

3 
F8 /a F9 F7/a 

F9 F7/a F l 0 h  

2 F9 F7/a 

a F7 a F1o 

a F8 

a F1o a F8 

- 1 
T(0,L) = 2 

F9 
2 

a F8 
3 
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1 where the func ions F 7 I I F9 I F I O  Or 

= sinh a t sin a F7 

= sinh a - sin a F8 

= cosh a t cos a F9 

F1o = cosh a - cos a 

! 

The particular notation used in (14) for the functions of a 
as that used by Bishop and Johnson in Reference 1 I except for the signs of F and F 

Tabulated numerical values of these functions can be found in Reference 1. 

given in (15) i s  the same 

10' 8 

- 
The elements of the transfer matrix, T(0,L) I are nondimensional . It i s  sometimes more 
convenient to use the dimensional form of this matrix, denoted by T(0,L) I which i s  
defined by the equations 

1 T(OIL) = 2 

1 L 3  

1 L 2  

1 1 L 2  

1 L  I 

- (-) F,o I - El F8 
E l  a I 

(-) Fl0 - -  
(;IF7 I E l  a 

F9 
I a 

'i: F8 ' I F9 

I I 
E l  (f)* Fl0 I E l  (f) F8 I I 

I 1 

I 

F9 

a - E I  (r) a 3  F 7 1  -El (T) a 2  F l 0  I -L 
I I 

L - -  
a F7 

F9 
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It i s  often convenient to reverse the order of the transfer matrix equation (16) and write 

where the transfer matrix T(L,O) i s  the inverse of T(O,L), and is  

1 T(L,O) = 

F9 

The nondimensional form of T(L0) is defined by the equations 

w (0) 

W O )  

L~M(O)/E I 

- L3V(0)/E I 

where j(L,O) i s  

- 
= T(L,O) 
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1 T(L,O) = - 2 
- 

F9 
- F f i  F l d "  2 - F$a3 

- a F8 F9 - F7/ .  W2 
- a F8 F9 - F/a 2 

a 5 0  

1.2 Beam Stiffness Matrix Without Intermediate Applied Loads 

The dynamic stiffness matrix for the uniform beam without intermediate loads i s  a 
matrix which when postmultiplied by the column matrix of the deflections and slopes 
at the two ends of the beam w i l l  be equal to the column matrix of the bending moments 
and shears at the two ends of the beam. Denoting the dynamic stiffness matrix by K , 
it i s  clear that one possible definition of K i s  given by the equation 

which i s  often expressed alternatively as follows: 

L~M(O)/E I 

L~M(L)/E I 

- L3V(0)/E 

-L3V(L)/E I 

- 
= K  

In order to use the above matrix equations to determine the form of K it i s  convenient 
to define the following matrices: 
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T(L,O) = 
T1 1 T12 

T21 T22 

1 1 '  T12 ' T21 The 2 x 2 matrices T T22 can be obtained from (19) and are 

- 7 - - - - -  - I  --- 
A F  L 8  

From (18) and from the matrix definitions in (24) I it follows that 

I 

I 
' F9 

9 



Solving (27) for P(L) gives 

P(L) = Ti: d (0) - $: T1 d (L) 

The load matrix P(0) can then be determined in terms of the deflections by 
substituting (29) in (28) giving 

- T T- l  T ] d(L) + T22 Ti: d(0) p(o) = 1 T2l 22 12 11 

Equations (29) and (30) can be combined into the single matrix equation 

The inverse matrix TT!, can be shown to be equal to 
I I  

-1 1 
T12 

= - 
hO 

where 

I 

ho = cosh a cos a - 1 

-1 
and T12 gives Forming the product of T 22 

I I E l  (T) a 2  h5 I 2 E I  ( F ) h l  
I 

(3 3) 

(34) 

10 



where 

i 

I 

hl 

h2 = cosh a 

h5 = 2 sinh a 

= cosh a sin a - sinh a cos a 

sin a + sinh a cos a 

sin a 

-1 
Forming the product of - T,2 and Tll gives 

(35) 

I 
I - 2 E I  (T) hl a 2  

I 

- ' T  = 1 t---i;--j---;i--! € 1  (L' h5 (36) 

- 2EI (T) h2 E l  \L' h5 
-T12 11 2h0 

T ) gives 21 - T22Ti; 11 Forming the product T T - l  T 22 12 11 and determining the quantity (T 

1 
T21 - T22 Ti; T 1 l  = hg 

! 
- 7 - - - - - -  - - - - - -  

Now substituting (24), (32), (34) , (36) and (37) into (31) and using the definition 
for K in (22) gives the following dynamic stiffness matrix for a uniform beam 
without intermediate applied loads: 

I I 

E l  K = -  
2h0 

F8 

I -2 ( f - )h l  
I 

I I I 

11 



1.3 Beam Transfer Matrix for Intermediate Concentrated Force and Couple 

A diagram of a uniform beam which has a concentrated force F and couple, or 
moment, M applied at point x = 
the ends, i s  shown in Figure 2 below. 

and bending moments and shears applied at x1 

L x 1  0 

Figure 2: Diagram of Uniform Bean with Intermediate Applied 
Concentrated Force and Couple. 

In order to obtain the transfer m d i k  fie? x = C! fc! x = L i t  i s  necessary to develop 
transfer matrices from x = 0 to x = x1 - 0, from x = x - 0 to x = x1 + 0, and from 

x = x + 0 to x = L. For this purpose a free-body diagram of the beam is presented 

in Figure 3 which shows the end loads, internal loads and applied loads. 

1 

1 

Figure 3: Free-body Diagram of Beam Showing Internal 
and Applied Loads. 
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By comparison with (16), the transfer matrix equation from x = 0 to x = x - 0 i s  1 

= T(O,xl - 0) 

where 

T(O,xl -0) = transfer matrix obtained from (17) by 
replacing L by x1 and replacing a 

by a1 

The deflections and slopes at x, - 0 and x, + 0 are equal. However, from 

equilibrium of the central span between x - 0 and x1 + 0, the loads at 
I I 

1 

(39) 

x = x  + O  are 1 

M(x1 + 0) = M(Xl - 0) - M(Xl) 
j 

t 
I V(x1 + 0) = V(x1 - 0) - F(x1) 

Thus the transfer matrix equation from x1 -0 to x1 + 0 i s  

(39.1) 

= I  - ' 1  

13 



where I i s  a 4 x 4 unit matrix and I i s  1 

- 
' 1  - 

0 0 0 0 
0 0 0 0 

0 0 1 0 

0 0 0 1 

By comparison with (16), the transfer matrix equation from x = x + 0 to x = L i s  1 

= T(x1 + 0, L) 

T(xl + 0, L) = transfer matrix obtained from (17) by 
replacing L by (L - xl) and by 

replacing a by a 2' 

Substitution of (39) into (40) and substituting the resulting equation into (42) gives 
the transfer matrix equation from x = 0 to x = L, namely 

= T(x1 + 0, L) T(0, x1  - 0) - T(x1 + 0,L) I 

Clearly the matrix product T(x1 + 0, L) T(0, x1 - 0) must be equal to T(0,L) as 

defined by (17) so that (43) can be written as 

14 



It i s  to be noted now that the tranfer matrix T(0,L) contains the quantities a and L 
whereas the matrix T(xl + 0, L) contains the quantities a2 and (L - xl). However, 

since the frequency of vibration w, the stiffness E I, and the mass per unit length 
are the same for the span x + 0 to L as for the entire beam, then from the frequency 1 
equation (4) it follows that 

[K = Gl a2 = -  a 
L 

or 

a2 

Thus in T(xl + 0, L) , the ratio a/(L- x,) can be replaced by a/L, but a2 must 

be computed from (45). Thus the matrix product T(xl + 0,L) I 

(45) 

1 
T(x,+ 0,L) I =y 

The transfer matrix equation can be le f t  in the form shown in (44) or i t  can be written in 
the following alternate form 

15 



where the rectangular transfer matrix T (0,L) is defined by (48) 1 

(See next page for Equation 48) 

16 



'zu 
b 

W 

n 
(v 

0 
c 

2. h 
LL 

0 
c 

LL 

$5 v 

n 

3 
h 

LL 

n 

n 

-3 
0. 

LL 

n 

-3 
a0 

LL 
n 

u p  
I 

n 

b 

LL 

W n 

Aq-0 
W 

n 

3 
0. 

LL 

b 

LL 

W 

00 

01-J - 
Lu 

n 

0 

LL 

W 
0. 

n 

3 

4-1 

00 
LL 
n 

W 

3 
h 

LL 

b ! A  - 
w 
I 

-IN 
II 17 

e. 
h 
J . 
c 
c 



The transfer matrix from x = L to x = 0 can be obtained by the following steps: 

= T(x, - 0,O) 

=T(x1 -0,O) 

=T(x1 -0,O) T(xl+O,L) 

= T(L,O) 

+ T(x1 - 0,O) I ,  

+ T(x1 - 0,O) I 

+ T(x1 - 0,O) I 

where T(L,O) i s  defined by (19) and Il i s  defined by (41). The.transfer matrix T(x - 0,O) 
can be obtained from (19) by replacing L by x1 and replacing a by al . The quantity 

1 

i s  defined by the equation al  
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7 7 =- a 
L x1 

[&2]1’2 = 

Thus the matrix product T(x - 0,O) Il is  equal to 
1 

It i s  possible to write (49) in the following form 

where the rectangular transfer matrix in (52) i s  equal to the following: 

(See next page for equation 53) 
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1.4 Beam Stiffness Matrix For Intermediate Concentrated Force and Coude 

The dynamic stiffness matrix for the beam shown in Figure 2 i s  a matrix which relates 
the three pairs of loads acting on the beam to the three pairs of deflections at x = 0, 
x = x and x = L. In keeping with the definition of the stiffness matrix given in (22), 

the stiffness matrix for the beam segment between x = 0 and x = x - 0 i s  defined 
by the equation, 

1 

1 

= K(O,x, - 0) 

where 

K(O,x, - 0) = stiffness matrix obtained from (38) by 
I * I  

repiacing L DY x1 arid i ~ ~ ! ~ ~ ~ ~ ~  Q h:, 

a where a = x1 a /L 1 1 

Similarly, the stiffness matrix for the beam segment between x = x + 0 and x = L 1 
is defined by the equation 

= K(x1 + 0,L) 

K(x1 + 0,L) = stiffness matrix obtained from (38) by 
replacing L by L - x1 and replacing a 

by a2 where a = a (1 - xl/L) . 2 

(54) 

(55) 

It i s  convenient now to write the stiffness matrices K(0,x - 0) and K(x, + 0,L) in the forms 1 

21 



K1 1 K1 2 

K21 K22 

K(O,x1 - 0) = 

Ki 1 Ki 2 

Khl K;2 

K(xl + 0,L) = 

Using a notation similar to that defined in (24), the equations (54) and (55) can 
be written in the form of simultaneous equations, 

(57) 

I P(X1) = P(X1 - 0) - P(X1 + 0) (62) 

Substituting (59) a d  (60) into (62) gives 

i s  defined by the equation 

I I 

I I 
0 I Kil I K;2 

In expanded form, (64) can be expressed as 

22 



where the stiffness matrix K(0,x ,L) i s  given by Equation 66 1 

(See next page for Equation 66) 
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1.5 Beam Transfer Matrix for Several Intermediate Concentrated Forces and Moments 

A diagram of a uniform beam which has a number of concentrated forces F(x ) and 

couples M(xn), and bending moments and shears at the ends, i s  shown in Figure 4 

below. Equation (44) 

n 

F (xn) 

LJ(; F(x,) F(x2) - - - - v (0) 

M(Xn) M (L) 
M(x,) M(x2) - - - - - 

- x  
Mu)) 

x 1  x 2 - - - -  - 'n 0 
Figure 4: Diagram of Uniform Beam with Intermediate Applied Forces, 

1 '  

Cc9$ec; and End Loads. -. 
gives the transfer matrix equation for a single applied force and couple at x 

equation i s  easily generalized to the following for n intermediate forces and couples 
shown in Figure 4, 

I his 

where the transfer matrices T(x + 0,L) I are defined as 
r 1 

25 



1 
r 2 T(x +O,L) = - 

and where a r 
is equal to 

X 

a r = [ I - +  a] 

Similarly a generalization of (49) gives the transfer matrix equation 

where the transfer matrix T(x - 0,O) I l  i s  
r 

1 T(x - 0,O)’ I l  = - 
r 2 

where 

a ’  = x r a / L  r 

26 



1 .6 Beam Stiffness Matrix for Several Intermediate Corxentrated Forces and Couples 

Using the notation of (24), the stiffness matrix for tl 5 beam segment between x = 0 
and x = - 0 can be obtained from (54) and (56) a, d i s  defined by the equation x 1  

The notation K..(a") denotes that the matrices K.. , as defined by (54) and (56) , 
are functions of L/a and a ' I  where 

' I  1 1 1  

1 

a "  1 = x la /L  (74) 

The load transfer equation across the point x 
to (62), namely 

can be written in a manner similar 1 

P(xl) = P(X1 - 0) - P(X1 + 0) (62) 

The stiffness matrix equation for the beam segment between x = x + 0 and x = x3 - 0 1 
i s  similar to that defined by (60) , nameiy, 

where 

a "  2 -  a 
- L  x2 -xl 

From (73) and (75) , the load matrix P(xl) in (62) can be expressed in the form 

L 

(75) 

(76) 

27 



Equation (77) i s  easily generalized to give the stiffness matrix cqvation for ihe 
loads at x ( 1 I r I n) 

r '  

I 1 I 

where x = 0 and x + 1 = L, and where 0 n 

a a I '  
r - -  - 

x - x  L 
r r-1 

the general stiffness matrix can now be defined by the equation 

where the stiffness matrix 

K(O,xl , . . . ,x ,L) = n 

= K(O,X~,.. .~X n 

K(O,x1,...,x /L) i s  n 

0 

0 

I C  

(79) 
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and where the submatrices E. are 
I 

I I 

a "  = xla/L 

a "  = (x - x  - 1) a /L  

a i l  

1 

r r r  

= (L - x n )  a/L  

(83) 

I 

1.7 Beam Transfer Matrix for Continuous Applied Force and Moment Distribution 

A diagram of a uniform beam which has a continuous distribution of applied forces and 
moments along the spanf and bending moments and shears at the beams ends, i s  shown 
in Figure 5 below. The bean transfer matrix for this 

29 



335s 

v(L) I 

Figure 5: Diagram of Uniform Beam with End Loads and Continuous 
Distributions of Applied Forces and Moments 

case can be developed by allowing the number of discrete applied forces and couples 
shown in  Figure 4 to increase without bound, and passing to the limit in (67) and (70). 

Let the continuous force per unit length f(x), and the continuous moment per unit 
length m(x), be expressed in  the form 

f(x) = f0Vf(X) 

where qf(x) and 9 (x) are distribution functions which have a maximum value of 

unity. The quantities f and m thus represent the maximum amplitude along the 

span of the applied force and moment distribution respectively. 

m 

0 0 

The incremental force dF(x) and the incremental moment dM(x) acting over an 
incremental length dx at x are 

30 



dF(x) = fo gf(x) dx 

dM(x) = mo gm(x) dx 

Substituting dF(x) and DM(x) for F(x> and M(x,) in (67) and passing to the 

l i m i t  as dx approaches zero gives 

The transfer matrix T(x, + 0, L) I ,  in (67) contains the parameter ar which i s  

defined by (69). In the limiting case, a wi l l  be replaced by p where 
r 

Thus p i s  a continuous function of x .  From a knowledge of the transfer matrix 
defined in (68), the transfer matrix equation (87) can be written in the form 

= T(0,L) 

0 

0 

where the "continuous" transfer matrix T i s  equal to 
C 

31 



1 T (L) = - 
C 2 

Similarly, in the I im it  (70) becomes 

1 T (0) = - 
C 2 

where the transfer matrix T (0) can be obtained from (71): 
C 

where from (72) 
I 

(93) 32 
y = a x/L . 


